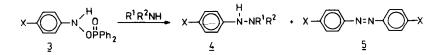
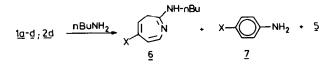

FORMATION OF ACCEPTOR SUBSTITUTED PHENYLNITRENES VIA α -ELIMINATION UNDER MILD CONDITIONS

Ferdinand Bosold, Gernot Boche^{*}, Wolfgang Kleemiß Fachbereich Chemie der Philipps-Universität Marburg, D-3550 Marburg, BR Deutschland


Summary: The acceptor substituted 1a-d and 2d react with n-butylamine to give 5, 6 and 7. This strongly suggests the intermediate formation of substituted phenylnitrenes via α -elimination.

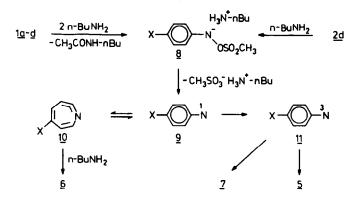
As part of our studies¹ of model reactions on the carcinogenesis of aromatic amines² we investigated the reactions of the p-substituted O-(methylsulfonyl)-phenylhydroxamic acids $1a-d^3$ and of p-nitrophenyl-O-(methylsulfonyl)-hydroxylamine 2d with n-butylamine. Only with X = NO₂ we were able to isolate besides the more stable hydroxamic acid derivative 1d the (generally much more labile) hydroxylamine species 2d.



1 a: $X = CH_3OCO$; b: $X = CH_3CO$; c: X = CN; d: $X = NO_2$

Since the reactions of the related O-(diphenylphosphinyl)phenylhydroxylamines $3b-d^{1b}$ and of others^{1a,b} with primary and secondary amines, respectively, gave hydrazines 4 and symmetrical azo compounds 5 we anticipated these products also from the reactions of **1a-d** and **2d** with amines.

However, no hydrazines 4 have been observed in the reactions of la-d and 2d with n-butylamine. Instead, we isolated only the 3-H-azepines 6 and the anilines 7 together with the symmetrical azo compounds 5.


The thermal conditions of the 100 mM reactions of 1a-d and 2d, respectively, in n-butylamine as the solvent, and the yields of 6, 7 and 5 are given in Table 1.

1 or 2	τ[°]	azepines 6 [%]	anilines 7 [%]	azo compounds 5 [%]
1b	20	8	44	25
	78	47	15	20
1c	-30	9	49	23
	20	30	3	67
	78	51	2	44
1d	-30	-	90	7
	78	-	94	2
2d	-30	-	60	30
	78	-	15	22 ^a

Table 1. Yields of **6**, **7** and **5** in the reactions of **1a-d** and **2d**, respectively, with n-butylamine at various temperatures⁴

^a In this reaction tar is formed, too.

These products, the 3-H-azepines 6, anilines 7 and symmetrical azo compounds 5, of course, are strongly indicative of arylnitrene intermediates as observed in a plethora of investigations on the photolysis and thermolysis of arylazides in the presence of amines⁵. In the present case the reactions should start via deacetylation of $1a-d^6$, and deprotonation of 2d, respectively, to give the nitrenoids 8. In contrast to the "nitrenoids" formed on deprotonation of 3 (see the preceding communication) the nitrenoids 8 should be much more prone to α -elimination because $CH_3SO_3^-$ is a much better leaving group than $Ph_2PO_2^-$. α -Elimination of $CH_3SO_3^-H_3N^+$ -nBu thus should lead to the singlet nitrenes 9.

Singlet nitrenes like 9 are known to be in equilibrium with the corresponding dehydroazepines 10 the formation of which is generally more favorable at higher temperatures^{5,7}; the dehydroazepines 10 are trapped by amines to give

the 3-H-azepines^{5,8} 6. This pathway competes with the intersystem crossing reaction which transforms the singlet nitrenes 9 into the triplet nitrenes 11 from which the anilines 7 and the symmetrical azo compounds 5 are formed. The anilines 7 could either result from H-abstraction⁵ or via electron transfer reactions⁹. The formation of the azo compounds 5 from nitrenes is "not completely understood"^{5b}.

The following details of Table 1 are especially supportive for the intermediate formation of the singlet 9 and the triplet nitrenes 11, respectively:

- In the reactions of 1b and 1c the amounts of 3-H-azepines 6b and 6c, respectively, increase as the temperature is raised which is in agreement with the above mentioned general observations^{5,7}.
- 2. The reaction of the <u>p-methoxycarbonyl</u> substituted 1a with n-butylamine at 20°C leads exclusively to the 3-H-azepine **6a**; neither aniline 7a nor azo compound 5a have been detected. This result compares well with that of the photolysis of <u>p-dimethylamidophenyl</u> azide if one accepts similar substituent effects in both cases: In the presence of diethylamine at 20°C the corresponding 3-H-azepine is similarly formed in "nearly quantitative yield"¹⁰. Thus, in both cases the same intermediates, that is the singlet nitrenes, should dominate.
- 3. Neither in the photochemical reactions of p-nitrophenylazide in the presence of amines nor in the reactions of 1d or 2d with n-butylamine 3-Hazepines like 6d have been observed. Because of the comparatively fast intersytem crossing reaction only the products formed from the triplet nitrene 11d - 7d and 5d - are found in both cases^{5,11,12}. It is worth mentioning that because of the fast formation of the triplet nitrene 11d p-nitrophenylazide is widely used as a photolabelling agent in biological macromolecules¹³. The results reported in this work suggest a similar use for 1d and 2d.

Finally, it should be mentioned that aryInitrenes have been prepared before by α -elimination or related reactions, as, e.g., in the deoxygenation of aryInitro or aryInitroso compounds with phosphorous(III) reagents¹⁴. The formation of nitrene intermediates occurs, however, mostly at temperatures >100°C as this is the case in the thermolysis of N,O-disilylated phenylhydroxylamines¹⁵. In the reaction of N-chloro aniline with n-butyllithium at -100°C a nitrene intermediate apparently has also been formed^{16,17}.

This work has been supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the BASF AG.

- -----
- a. G. Boche, R.H. Sommerlade, F. Bosold, Angew. Chem. <u>98</u>, 563 (1986); Angew. Chem. Int. Ed. Engl. <u>25</u>, 562 (1986); b. G. Boche, C. Meier, W. Kleemiß, preceding communication; c. G. Boche, F. Bosold, S. Schröder, Angew. Chem., submitted.
- 2. See ref. 5 in the preceding communication.